Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Backgating effect in III-V MESFET's: A physical model

Identifieur interne : 000191 ( Main/Repository ); précédent : 000190; suivant : 000192

Backgating effect in III-V MESFET's: A physical model

Auteurs : RBID : Pascal:14-0025778

Descripteurs français

English descriptors

Abstract

The backgating (sidegating) effect in III-V MESFET's devices is analyzed through the modelisation of a Metal (Schottky barrier)-N (channel)-SI (Semi Insulating)-N+ (back-gate contact) structure. Numerical and analytical results, using the drift-diffusion charge transport model, show that along the applied voltage range associated with backgating: (i) quasi space charge neutrality across most of the bulk SI layer and (ii) quasi Boltzmann equilibrium for the free electron across the reverse biased N (channel)-SI contact prevail for GaAs (SI) or InP (SI). The circumstances under which a negative bias applied on the back-gate (N+) contact will either develop across the reverse biased N-SI contact (strong backgating) or across the SI layer (negligible backgating) are described by means of a simple analytical relation as a function of the deep level parameters values. The electric field dependence of the carrier mobility (Gunn effect) produces a backgating effect with a threshold voltage. The presence of a low lifetime, buffer layer, at the N-SI interface is shown to strongly reduce it.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0025778

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Backgating effect in III-V MESFET's: A physical model</title>
<author>
<name sortKey="Manifacier, J C" uniqKey="Manifacier J">J. C. Manifacier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LE.S. - Université des Sciences et Techniques - Montpellier II, Place Eugène Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ardebili, R" uniqKey="Ardebili R">R. Ardebili</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>LE.S. - Université des Sciences et Techniques - Montpellier II, Place Eugène Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0025778</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0025778 INIST</idno>
<idno type="RBID">Pascal:14-0025778</idno>
<idno type="wicri:Area/Main/Corpus">000280</idno>
<idno type="wicri:Area/Main/Repository">000191</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Back surface</term>
<term>Binary compound</term>
<term>Buffer layer</term>
<term>Charge carrier mobility</term>
<term>Charge transport</term>
<term>Deep level</term>
<term>Drift mobility</term>
<term>Durability</term>
<term>Electric field</term>
<term>Free electron</term>
<term>Gunn effect</term>
<term>Indium phosphide</term>
<term>MOS technology</term>
<term>MOSFET</term>
<term>Metal semiconductor field effect transistor</term>
<term>Numerical simulation</term>
<term>Reliability</term>
<term>Schottky barrier</term>
<term>Silicon</term>
<term>Space charge</term>
<term>Voltage threshold</term>
<term>n channel</term>
<term>n type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Surface arrière</term>
<term>Transistor effet champ barrière Schottky</term>
<term>Barrière Schottky</term>
<term>Canal n</term>
<term>Simulation numérique</term>
<term>Méthode analytique</term>
<term>Mobilité dérive</term>
<term>Transport charge</term>
<term>Charge espace</term>
<term>Electron libre</term>
<term>Niveau profond</term>
<term>Champ électrique</term>
<term>Mobilité porteur charge</term>
<term>Effet Gunn</term>
<term>Seuil tension</term>
<term>Durabilité</term>
<term>Technologie MOS</term>
<term>Transistor MOSFET</term>
<term>Silicium</term>
<term>Semiconducteur type n</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Couche tampon</term>
<term>Fiabilité</term>
<term>InP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The backgating (sidegating) effect in III-V MESFET's devices is analyzed through the modelisation of a Metal (Schottky barrier)-N (channel)-SI (Semi Insulating)-N
<sup>+</sup>
(back-gate contact) structure. Numerical and analytical results, using the drift-diffusion charge transport model, show that along the applied voltage range associated with backgating: (i) quasi space charge neutrality across most of the bulk SI layer and (ii) quasi Boltzmann equilibrium for the free electron across the reverse biased N (channel)-SI contact prevail for GaAs (SI) or InP (SI). The circumstances under which a negative bias applied on the back-gate (N
<sup>+</sup>
) contact will either develop across the reverse biased N-SI contact (strong backgating) or across the SI layer (negligible backgating) are described by means of a simple analytical relation as a function of the deep level parameters values. The electric field dependence of the carrier mobility (Gunn effect) produces a backgating effect with a threshold voltage. The presence of a low lifetime, buffer layer, at the N-SI interface is shown to strongly reduce it.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>91</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Backgating effect in III-V MESFET's: A physical model</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MANIFACIER (J. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ARDEBILI (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>LE.S. - Université des Sciences et Techniques - Montpellier II, Place Eugène Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>13-18</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000501613230030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0025778</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The backgating (sidegating) effect in III-V MESFET's devices is analyzed through the modelisation of a Metal (Schottky barrier)-N (channel)-SI (Semi Insulating)-N
<sup>+</sup>
(back-gate contact) structure. Numerical and analytical results, using the drift-diffusion charge transport model, show that along the applied voltage range associated with backgating: (i) quasi space charge neutrality across most of the bulk SI layer and (ii) quasi Boltzmann equilibrium for the free electron across the reverse biased N (channel)-SI contact prevail for GaAs (SI) or InP (SI). The circumstances under which a negative bias applied on the back-gate (N
<sup>+</sup>
) contact will either develop across the reverse biased N-SI contact (strong backgating) or across the SI layer (negligible backgating) are described by means of a simple analytical relation as a function of the deep level parameters values. The electric field dependence of the carrier mobility (Gunn effect) produces a backgating effect with a threshold voltage. The presence of a low lifetime, buffer layer, at the N-SI interface is shown to strongly reduce it.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Surface arrière</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Back surface</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Superficie atrás</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transistor effet champ barrière Schottky</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Metal semiconductor field effect transistor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transistor efecto campo barrera Schottky</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Barrière Schottky</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Schottky barrier</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Barrera Schottky</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Canal n</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>n channel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Canal n</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mobilité dérive</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Drift mobility</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Movilidad deriva</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Charge espace</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Space charge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Carga espacio</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Electron libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Free electron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Electrón libre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Charge carrier mobility</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Movilidad portador carga</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Effet Gunn</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Gunn effect</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Efecto Gunn</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Durabilité</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Durability</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Durabilidad</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Technologie MOS</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>MOS technology</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Tecnología MOS</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Transistor MOSFET</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>MOSFET</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>19</s5>
</fC07>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0025778
   |texte=   Backgating effect in III-V MESFET's: A physical model
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024